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Figure 1: The visualization results for Hurricane Isabel dataset. (a)(b)(c) show results at time step 0. (a) On the projection view, two groups of
points are selected. Each point represents the pathline starting from a spatiotemporal point. (b) In the attribute matrix, the selected pathlines
are projected in individual scatterplots in the matrix. Each selected group in (a) appears to be clustered in attribute space. (c) In the spatial view,
the spatial distribution of the corresponding pathlines are visualized. (d) shows the projection view and spatial view of corresponding pathlines
at time step 4, 8, 12, 16, and 20.

ABSTRACT

In this paper, we present a novel scalable approach for visualizing
multivariate unsteady flow data with Lagrangian-based Attribute
Space Projection (LASP). The distances between spatiotemporal
samples are evaluated by their attribute values along the advection
directions in the flow field. The massive samples are then projected
into 2D screen space for feature identification and selection. A hy-
brid parallel system, which tightly integrates a MapReduce-style
particle tracer with a scalable algorithm for the projection, is de-
signed to support the large scale analysis. Results show that the
proposed methods and system are capable of visualizing features
in the unsteady flow, which couples multivariate analysis of vector
and scalar attributes with projection.

Keywords: Flow visualization, attribute space projection, parallel
processing

1 INTRODUCTION

Visualization and analysis on flow field data has been long stud-
ied in the community, such as texture-based [19] and geometry-
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based [21] flow visualization. However, it is still challenging to
visualize the insights into large scale unsteady flow data. For exam-
ple, the visual clutter problem often exists in geometry-based flow
visualization, which requires careful seed placement strategies. The
same problem also exists in texture-based 3D flow visualization.

Alternative to traditional flow visualization methods, interactive
feature selection techniques have been developed to help users to
identify and extract interesting features in the flow field. Among
them, projection methods can help users to identify and select fea-
tures in both projection space and spatial space. For example, sam-
ple values in 2D flow are mapped into 2D space, thus important
spatial structures can be extracted interactively on the projection
space [7]. Streamlines can also be projected according to their ge-
ometry distances for visual exploration [28].

However, there are certain problems in the current practice on the
projection of flow field data, especially for unsteady flow dataset
with multivariate scalar fields. Traditional projection techniques,
which are originally proposed in the light of multivariate data, do
not sufficiently take the flow advection into account. For exam-
ple, if l2-norm is used to evaluate the distance of two velocities, it
is equivalent to the differences of velocity magnitude, thus the di-
rectional information is totally lost. Even if feature descriptors are
applied to compute the distances, e.g. λ2 or vorticity magnitude,
the evolution of the unsteady flow is still ignored, as the particles
advect in the field.

In this work, we propose Lagrangian-based Attribute Space Pro-
jection (LASP), which tightly couples multivariate analysis and



flow advection. A parallel system is also developed to support large
scale analysis. With LASP, sample points in unsteady flow are em-
bedded into a lower dimensional space using Multi-Dimensional
Scaling (MDS) with the Lagrangian-based distance metric. The
metric, not only accounts for the multivariate attributes on the cur-
rent location, but also accumulates the attribute values along the
particle advection locations. Formally, we use Lagrangian instead
of Eulerian specification to compute the distances. The Pivot MDS
algorithm [2], which is with low complexity, is used to project the
samples, and we further develop the out-of-sample extension to
Pivot MDS for efficient multiresolution analysis of large scale data.

Studying flow fields with Lagrangian specification in visualiza-
tion has been proved as a success in previous research [12, 29].
However, it is challenging to use Lagrangian specification in flow
field analysis, because it is a both data- and task-intensive problem.
The computation power of supercomputers is essential for such
analysis on large scale unsteady flow. In our system design, two
major routines are parallelized to support large scale data analysis,
including the particle tracing and the projection. For the massive
particle tracing, a MapReduce-like framework called DStep [17] is
used. It is the most scalable solution for particle tracing up to date.
For the massive projection, the scalable Pivot MDS [11] is used to
accelerate the projection. We also develop the streaming extension
to the existing Pivot MDS algorithm to decrease computation cost
for multiresolution and progressive analysis. However, due to the
MapReduce-like architecture design of DStep, the incorporation of
the Pivot MDS is not straightforward. In the system, the two-pass
procedures are designed to compute pathlines for Pivot MDS, and
the projection is done in the reduce stage in parallel. More details
are provided in following sections.

The contributions of this paper are three-fold: 1) Lagrangian-
based attribute space projection featuring a new distance metric; 2)
Out-of-sample extension for multiresolution analysis; 3) Scalable
and parallel implementation.

In the remainder of the paper, we describe the background in
Section 2. In Section 3, Lagrangian-based attribute space projec-
tion is introduced, and the parallel algorithms and system design
are described in Section 4. Results are shown in Section 5, and
conclusions are drawn in Section 6.

2 BACKGROUND

Visualization of flow field data is challenging, and it has been
studied for decades. In general, typical rendering techniques for
flow field data include texture-based [19] and geometry-based [21]
methods. The goal of our work better aligns with flow feature ex-
traction and tracking [26]. In addition to the traditional flow visual-
ization techniques, our method is more related to multidimensional
projection techniques, Lagrangian and Eulerian flow analysis, and
parallel particle tracing problems.

2.1 Multidimensional Projection Techniques

Multidimensional Projection techniques, which are widely used in
various visualization applications, map a group of data instance into
lower dimensions for data analysis. Multi-Dimensional Scaling
(MDS) techniques are the most commonly used projection meth-
ods. They transform multidimensional data elements into lower
and explorable dimension space according to the mutual distances.
There are mainly three types of MDS techniques, namely the
distance-scaling methods [10], optimization-based methods [18],
and eigensolver-based methods. In our work, we focus more on the
eignsolver-based techniques, because existing extensions are avail-
able to scale to large problem sets in parallel. Torgerson [32] pro-
posed the first eigensolver-based MDS algorithm, classical MDS.
The MDS is transformed to the eigensolver problem for the double-
centered distance matrix. However, both the computation and stor-
age complexities are often too high for real massive applications.

Landmark MDS [8], which is an approximation to classical MDS,
significantly reduces the complexities by only computing the eigen-
decomposition of a few landmark elements. Pivot MDS [2] further
improved the quality of landmark MDS. As the ever growth of the
data scale, MDS algorithms are accelerated by parallelism. Paral-
lel MDS algorithms are also accelerated on distributed and parallel
systems [34]. In our system, we use Pivot MDS [2] and its parallel
extension [11], which is efficient to the huge amount of spatiotem-
poral samples. Furthermore, the streaming extension is developed
for multiresolution and progressive analysis in our approach.

In scientific visualization, multidimensional projection has been
widely applied in various scenarios. Users can use brushing tech-
niques to select multivariate features in 2D [14]. For example, mul-
tivariate transfer functions can be generated by selecting features
on the projection plots [11]. For vector field data, distance metrics
are the key to obtaining intriguing projection results [7]. In addi-
tion to individual sample points in flow field, it is also meaningful
to embed field lines into lower dimensional spaces. Chen et al. [6]
proposed a method to explore DTI fibers on 2D MDS based on
mean distance, thus avoiding the cluttering problems in 3D space.
In streamline embedding [28], the distances between seed points
are defined as the Hausdorff distances between the corresponding
streamlines. Different from previous study on streamline embed-
ding, pathlines instead of streamlines are traced in unsteady flow,
which is much more challenging on the computation and the data
management. Furthermore, attribute space distance instead of ge-
ometry space distance is used to identify the flow features in La-
grangian perspectives.

2.2 Lagrangian and Eulerian Specifications

In fluid dynamics, there are basically two methods to describe un-
steady flow field, namely the Eulerian specification and the La-
grangian specification. Both two specifications are useful in dif-
ferent scenarios. In Finite-Element study, Arbitrary Lagrangian-
Eulerian techniques, which combine the benefits of the both spec-
ifications, are widely used in engineering simulations [31]. Sim-
ilar approaches are applied in dense and texture-based flow visu-
alization methods [19, 15]. Our focus is mainly on Lagrangian-
based approaches, which incorporate massive computation of field
lines. One typical example is Finite-Time Lyapunov Exponent
(FTLE) [13], which indicates how particles diverge around the seed
locations. Flow feature detection conducted by classifying pathline
attributes [29, 30, 9], can also be categorized as Lagrangian analy-
sis. Lagrangian specification is also used to compare the flow fields
in ensemble runs in previous research [12]. As the computation cost
of using Lagrangian specification is very high, parallelism is often
used to accelerate the particle tracing and analysis.

Formally, in Eulerian specification, the attribute values are as the
function of spatiotemporal location xt , where x is the location and t
is the time. For example, the velocity, the temperature, and the pres-
sure in a flow field can be written as v(xt), T (xt), and p(xt), respec-
tively. On the contrary, in Lagrangian specification, the attributes
are associated with the particles in the flow field, which are mov-
ing from the spatiotemopral location (at0). The Lagrangian spec-
ification of the above mentioned attributes are written as v(at0+t),
T (at0+t), and p(at0+t), respectively, where t is the elapsed time.
The relationships between the two specifications are as follows:

v(Xt0+t(at0+t)) =
∂X(at0+t)

∂ t
, (1)

where X is the displacement. For convenience, the Lagrangian
specification can be written as flow map, which is an implicit func-
tion of spatiotemporal locations x

t0
0 and elapsed time t:

Φ : (xt0
0 ; t) 7→ Φ

t0+t
t0

(x) = x(xt0
0 ; t). (2)
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Figure 2: The Eulerian-based (a) and Lagrangian-based (b) attribute
space projection for unsteady flow.

In the analysis of the unsteady flow, the data structures of Eu-
lerian and Lagrangian specifications are quite different. Unsteady
flow datasets in Eulerian specification are often stored as 3D or 4D
time-varying arrays. The Lagrangian specification is stored as a set
of pathlines, and each point along the pathlines contains multivari-
ate values from the dataset. It is highly difficult to compute and
store the pathlines for analysis. For example, in a global climate
simulation, if we record hourly positions and multivariate attributes
in the pathline for two-month time scope (usually more than 1,000
samples if the particle does not go out of the boundary), the inter-
mediate data scale is about 103 times larger than the raw flow data,
which is prohibitive in practice.

2.3 Parallel Particle Tracing

Analyzing unsteady flow with Lagrangian specification requires
massive particle tracing in the field with scalability, which is a fun-
damental yet challenging problem in high performance visualiza-
tion. The solution is either data- or task-parallelism. In data-parallel
methods, the load-balancing highly relies on the data block distri-
bution. Existing strategies include round-robin [25], hierarchical
clustering [33], etc. Other strategies include partitioning base on
flow features [5], and using flow-guided file layout to improve I/O
performance [4]. In task-parallel methods, scheduling is the key
to scalability. Studies on both dynamic [27] and static [24] load-
balancing are available in existing literature. Hybrid method using
on-demand strategy exists to reduce I/O and communication costs
for overall performance [3]. Parallel particle tracing also accelerate
the computation of FTLE [23].

DStep [17] is a MapReduce-like framework for particle tracing.
While MapReduce only handles data-parallel, DStep can manage
both data-parallel and task-parallel at the same time efficiently. It
is reported that DStep has scaled to 64K cores in BlueGene/P. Guo
et al. [12] proposed an improved system based on DStep to extract
features as differences in ensemble flow data. Our system further
extends the design for the applications, fully embraces the parallel
Pivot MDS algorithm in the MapReduce-like workflow. More de-
tails and design rationales are provided in the following sections.

3 OUR METHOD

In this work, we propose LASP for the coupled multivariate anal-
ysis and flow advection. As shown in Figure 2, the essential dif-
ference to traditional projection technique is the use of Lagrangian
specification for distance computing. We provide three different

views for the visual analysis on unsteady flow data with LASP,
including the projection view, the attribute matrix, and the spatial
view. The attribute matrix contains the scatterplots which presents
the projection of pathlines in the attribute spaces. Users can iden-
tify and select features in the projection view, and observe both the
attribute and the spatial distribution in the other two views.

Our method is capable of and necessary to scale with parallelism.
First, the unsteady flow data is often overwhelmingly large without
parallelism. Second, the massive pathlines can be traced in parallel.
Third, the parallel MDS projection is also necessary.

3.1 Overview of LASP

The LASP method transforms the spatiotemporal samples in un-
steady flow into a 2D screen space for feature identification and
selection. The projection, in which similar samples are positioned
saliently, is based on the Lagrangian-based distance metric. The
new distance metric not only considers the multivariate attribute
values on the fixed spatiotemporal positions, but also accounts the
sample values on the flow trajectories that are traced from the above
positions. Thus, we tightly couple the multivariate analysis of both
flow advection and scalar attributes with projection.

As the amount of spatiotemporal samples is huge, we adopt
Pivot MDS to reduce the complexity. Compared to traditional
methods like classical MDS, it is not necessary to compute the
distances between all spatiotemporal samples (O(n2)), which is
prohibitive in our framework. Notice that the distance comput-
ing is even more challenging than Eulerian-based method, because
Lagrangian-based metric requires both tracing and comparison of
pathlines. With Pivot MDS, we only need to compute the distances
between all samples with a small set of randomly selected ones, so
called pivot elements or pivots. Thus, the complexity is reduced
to O(kn), where k is the number of pivots. We further develop the
out-of-sample extension to Pivot MDS, to support progressive and
multiresolution analysis.

The logical pipeline of the projection is shown in Figure 3. From
the raw data, the pathlines are traced from all spatiotemporal sam-
ple points. The distances between every pathline pairs are com-
puted according to Lagrangian-based metric, then the projection
plot is created by MDS techniques. Although the logical pipeline
appears to be straightforward, it is challenging to achieve the goal
in efficient and scalable way. First, the massive tracing of path-
lines is very costly in I/O bandwidth, computation, and memory
use. Second, the distance computation and projection is also costly.
Although Pivot MDS with out-of-sample extension has largely re-
duced the complexity, the overall complexity is still too high for
real applications in a serial manner. Further design on the parallel
and scalable system is needed.

3.2 Distance Metric

The essence of LASP is to measure and show the distance between
the spatiotemporal samples with the Lagrangian specification. The
illustration of the Lagrangian-based distance metric is shown in
Figure 2. The attribute values are collected along the movement
of the particle, instead of only one sample.

Without the loss of generality, the distance between xt and x′
t ′

is
defined as follows:

d2(xt
,x′

t ′
; tc) =

∫ tc

0
∑
k

ω2
i ||Ak(Φ

t0+τ
t0

(x))−Ak(Φ
t ′0+τ

t ′0
(x′))||2dτ,

(3)
where Φ is the flow map, and ωk is the weight for the attribute
Ak. tc is the time window size, which defines the time scope for
the comparison. Notice that tc is less than the total time T of the
dataset. In discrete form, the distance is written as:

d2(xt
,x′

t ′
; tc) =

1

N

N

∑
i

∑
k

ω2
i ||Ak(Φ

t0+i∆t
t0

(x))−Ak(Φ
t ′0+i∆t

t ′0
(x′))||2,

(4)
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Figure 3: The logical pipeline of Lagrangian-based attribute space projection.

where N is the maximum common number of samples of the two
flow maps (pathlines), and ∆t is the sample distance on the time
dimension. N is implicitly determined by the time window size tc.

There are several important parameters in the distance metric,
including the attribute weights ωi and the time window size tc, etc.
The impact on the distance from different attributes can be weighted
more or less by tuning ωi. For example, in the atmospheric simu-
lation, users can set different weights to the attributes like pressure,
temperature, etc., or completely remove certain attributes. tc is im-
portant to investigate the distances in different time scales for vari-
ous purposes. If tc is set to zero, then the distance metric is degraded
to an Eulerian-based one.

3.3 Out-of-Sample Extension to Pivot MDS for Multires-
olution Analysis

The Pivot MDS, which is with low complexity, is used for embed-
ding massive spatiotemporal samples by transforming the distances
into 2D screen space. In addition, we develop an out-of-sample ex-
tension to Pivot MDS, thus users can progressively refine the gran-
ularity of analysis by changing the resolution coherently. Similar
extensions to other projection techniques were studied in previous
research [1]. New samples can be directly added into current results
without changing the original layout, as shown in Figure 4.

Without loss of generality, the scaling process is based on the
distances between every sample pairs in the space. In the projection
result, the distances between points are approximately preserved by
minimizing the error:

min ∑
i< j

(||pi −p j||−δi j)
2
, (5)

where pi are the coordinates of the sample in the projection result,

and δi j = d(xti
i ,x

t j

j ; tc) is the distance between the two samples x
ti
i

and x
t j

j . With eigensolver-based methods, the optimal layout can be

obtained by solving the largest eigenvectors of the double-centered
distance matrix B. Pivot MDS only requires the n×k sized squared

distance matrix ∆(2) instead of a complete n× n matrix, thus the
complexity is reduced. The elements in the double-centered n× k
matrix C are [2]:

ci j =−
1

2
(δ 2

i j −
1

n

n

∑
r=1

δ 2
r j −

1

k

k

∑
s=1

δ 2
is +

1

nk

n

∑
r=1

k

∑
s=1

δ 2
rs), (6)

and then Pivot MDS evaluates the eigenvalues and eigenvector
of CT C instead of B, thus greatly reduces the complexity of the
eigensolver-based methods. The final coordinates p are obtained

by multiplying ∆(2) and the two largest eigenvectors v1 and v2.
The out-of-sample problem of Pivot MDS can be described as

follows. Given n′ more spatiotemporal samples in addition to the
existing n ones, compute the projection results of p and p′. In our
application, when the user increases the resolution for the analysis,
new spatiotemporal samples need to be added into the projection
results. Of course, this problem can be solved by recomputing the
MDS result for n+ n′ samples. The recomputing of the MDS re-
quires recalculating the double-centered matrix C′, the eigenvalues

and eigen vectors of C′T C′, which is obviously not efficient. An-
other problem is the coherency. Because the largest eigenvectors

(a) (b) (c)

Figure 4: The out-of-sample extension to Pivot MDS for multireso-
lution analysis: (a) low resolution (34,560 samples), (b) high resolu-
tion, out-of-sample extension (138,240 samples), (c) high resolution,
direct projection (the same number of samples as in (b)).

v′1 and v′2 are likely to change, original results p also differ from
the original positions. We assume that the newly inserted samples
in the multiresolution exploration are very similar to the original
ones, so the inner products of C′ are proportional to the original
ones:

C′T C′ ≈
n+n′

n
CT C. (7)

As the eigenvalues and eigenvectors are scale-invariant, we assume:

v′1 ≈ v1,v
′
2 ≈ v2. (8)

Thus, the new samples can be inserted into the projection results
while keeping the original positions p. The approximation by Eq. 8
can be interpreted as a “low-pass filter”, if the characteristics of new
inserted samples differ. Figure 4 shows an example of multireso-
lution analysis on GEOS-5 simulation data. The sample distance
in (a) is (12,6,18,4) in the 4 spatiotemporal dimensions, and it is
(6,6,9,4) in (b) and (c), thus the samples in (a) are in a subset
of the samples in (b) and (c). The out-of-sample extension pro-
vides consistent results in (b) as user increases the resolution for the
analysis.

4 SYSTEM DESIGN WITH SCALABILITY

The design goal of the parallel system is to fully incorporate particle
tracing with dimension projection in a scalable manner. The reason
for the integration is due to the volume of intermediate pathlines,
which is often much larger than the raw data, as we discussed in
Section 2.2. If the particle tracing and the projection are performed
independently, the intermediate data is prohibitive for file systems
to store in most cases.

The workflow of the parallel system is shown as Figure 5. We
use the modified DStep framework for particle tracing, and the pro-
jection is tightly integrated into the framework. The coupling of the
DStep and SPMDS is challenging, because MapReduce-like frame-
works are quite different to traditional visualization pipelines [22].
Our method requires sharing essential data including the pivot el-
ements, but the DStep design pattern requires “share-nothing” de-
sign of the algorithm. Several phases are configured to bypass the
restrictions.

4.1 Basics of Scalable Pivot MDS

Scalable Pivot MDS (SPMDS) projects massive multivariate sam-
ples into lower dimensions in parallel. Each process computes the
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Figure 5: The parallel system design. The scalable Pivot MDS is tightly integrated into DStep framework. The pivot pathlines and all other
pathlines are traced in the pivot phase and the distance phase, respectively. The projection is done after the distance matrices are computed.
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Figure 6: Timings tested on parallel environment with different numbers of processes. In (a), (b), and (c), three parameters related to problem
size, including number of samples n, number of pivots k, and the time window size tc, are changed respectively.

distributed squared distance matrix ∆
(2)
p at first, where p is the in-

dex of the process. The column and row summation of ∆(2) can be
obtained by collective communication for the construction of the
distributed double-centered distance matrix Cp. To get the inner
product of double centered dissimilarity matrix and its transpose,
CT C, we first calculate Cp

T Cp in each process, then use summa-
tion reduction among all processes. At last, the first two eigenvec-
tors are extracted for projection.

4.2 Basics of DStep

DStep, which is a MapReduce-like framework, is designed for sim-
plified domain traversal, e.g. field line tracing. DStep hides explicit
management of job scheduling and communication in a parallel en-
vironment. Developers only need to implement step() (map()
equivalent) and reduce() functions with proper key-value pairs.
In massive pathline tracing, partial pathlines are traced in the step
stage, and they are merged into complete pathlines in the reduce
stage. More details about the DStep framework and its memory
footprint improvements are documented in [17, 11].

4.3 Incorporating DStep with Scalable Pivot MDS

As we discussed above, there are two major components that need
to be parallelized, including the particle tracing and the Pivot
MDS. DStep, which is a MapReduce-like framework, brings fine-
granularity parallelism for particle tracing. Due to this design, the
integration of the both components is not as straightforward as a
pipelined model. The MDS projection needs to be tightly integrated
into the DStep framework. Because DStep also requires “share-
nothing” design, we avoid this restriction and share essential data
by setting up several phases.

Our design includes 4 phases, namely the I/O phase, the pivot
phase, the distance phase, and the projection phase. The sparse

pivot pathlines and dense pathlines are seeded at the beginning of
the pivot phase and distance phase respectively. The four phases
are detailed as follows.

I/O Phase. The domain is partitioned into blocks, which are
assigned to each stepper in round-robin order. The blocks are then
loaded from the file system at once using BIL library [16].

Pivot Phase. The system randomly picks up k spatiotemporal
points as the seeds for the pivot pathlines. The pivot pathlines are
then computed in the DStep routines. In the step stage, the partial
pathlines are traced. When a pathline goes out of the local block,
the partial result is then sent to the reducers and emit a new step
job to continue the pathline computation. A pathline is finished
when it goes out of the global domain, or the time duration reaches
tc. In the reduce stage, the partial results are merged into complete
pathlines, which are then parameterized for further distance com-
putation. When the pivot phase completes, all pivot pathlines are
distributed into all reducers for the next phase.

Distance Phase. The distance matrices are computed by com-
paring all pathlines and pivot pathlines. The pathlines are traced
online with DStep and then dumped right after the distance is com-
puted, in order to reduce the memory footprint. The step stage is
almost the same as the pivot phase. The reduce stage incorpo-
rates the merging and the parameterization of the pathlines, as well
as the distance computation. Every new generated pathline is com-
pared with all pivots, and the squared distance is then stored into the

distributed squared distance matrix ∆
(2)
p . At the end of the distance

phase, every reducer keeps the distributed distance matrix ∆
(2)
p for

the parallel MDS projection. Because of the nature of MapReduce-

like design, the numbers of rows of ∆
(2)
p are almost the same, which

ensures the load-balance of the projection phase.

Projection Phase. We follow the scalable Pivot MDS algorithm
to obtain the projection results from the distributed squared dis-



Region #Pathlines
% of all

Pathlines

Computing

Time (s)

2,579

5,485

18,791

0.2

0.7

3.3

2.3%

4.8%

16.4%

114,423 100% 22.0All

Table 1: Timings for interactive feature selection on the LASP plot
(Isabel dataset, t = 0, tc = 24, 32 processes). Three different regions
are selected for on-demand pathline computation.

tance matrices ∆
(2)
p . All computations are conducted on the pro-

cesses which contain reducer workers, as ∆
(2)
p is computed by each

reducer. First, the distributed squared distance matrix ∆
(2)
p is trans-

formed into the double-centered matrix Cp in parallel. Second, the

inner product matrices CT
p Cp are computed and then reduced into

CT C. The two eigenvectors v1 and v2 with largest eignenvalues are
then solved, and then used to project all elements into 2D.

4.4 Performance

We evaluate the performance and scalability in a parallel environ-
ment. The platform is an 8 node PC cluster. Every node is equiped
with two Intel Xeon E5520 CPUs which operate at 2.26GHz and
with 48GB main memory. The inter-node connection is InfiniBand
with 40Gbps theoretical bandwidth.

The benchmark timings of the system with different number of
cores and different problem sizes are shown in Figure 6. We tested
three parameters related to problem size, that is number of pivots,
number of samples, and tc. Our system maintains good efficiency
as the number of processes increasing. Although the full-range
analysis seems to be time-consuming, users can either use more
computing resources, or reduce the problem size by reducing the
sampling rate or enabling the out-of-sample extension.

The feature selection with LASP is interactive. When a user
queries samples in the projection plot, the parallel system (server
side) recomputes the corresponding pathlines on-demand, which
are further send to the spatial view (client side). The feature se-
lection timings (Table 1) are roughly proportional to the number of
selected samples. As there are often small portions selected, users
only need to wait for a short while to get the query results.

5 RESULTS AND DISCUSSION

We applied our system to two dataset, including Hurricane Isabel
simulation and GEOS-5 simulation.

5.1 Hurricane Isabel

Hurricane Isabel data is from an atmospheric simulation, which
consists 9 scalar variables and the wind field. The spatial resolution
of this data set is 500×500×100, which represents a physical scale
of 2,139km×2,004km×19.8km. There are 48 time steps, which are
saved per hour during the simulation. The overall size of the data
set is about 59 GB.

In this case, the wind speed vector field (U, V, and W) and five
scalar variables are considered, namely the wind speed magnitude
(SPEED), the pressure (P), the temperature (TC), the water vapor
mixing ratio (QVAPOR), and the total cloud moisture mixing ratio
(QCLOUD). These attributes are considered as most important at-
tributes for analyzing hurricanes, as suggested by domain experts.
We set timescope tc to 20 hours, so that we can discover clusters
in a relative long timescope. The visualization results are shown in
Figure 1. Two regions are chosen for our interests. To validate the
projection results, we map samples into the attribute matrix. From

(a)

Geometric Distance

tc = 24

(b)

ω = {3, 2, 1, 3, 3}

tc = 0 (Eulerian)

(c)

ω = {3, 2, 1, 3, 3}

tc = 12

(d)

ω = {3, 2, 1, 3, 3}

tc = 24

(e)

ω = {3, 1, 3, 5, 8}

tc = 24

(f )

ω = {3, 5, 0, 5, 3}

tc = 24

Figure 7: The projection results of Hurricane Isabel dataset with dif-
ferent distance metrics and parameters. Weights of attributes ω and
tc are shown with results except (a) use distance metric in geometric
space. Pseudo-color is used to visualize the difference between the
projection results.

the attribute matrix, we can observe that these two clusters are bun-
dled by attributes such as TC, QVAPOR, and QCLOUD. At the
same time, the two clusters are separated clearly in attribute space,
for example by attribute QVAPOR and TC. We then map samples
back to pathlines in the spatial view, trying to find their physical
meaning. Orange pathlines are traversing from the center of hurri-
cane to the peripheral part near the surface, while blue ones come
from peripheral part, then have circular traces around the center at
a high latitude. The orange cluster demonstrates transportation pro-
cess of water vapor from the eye of hurricane to the periphery. At
the beginning, orange pathlines convey relatively large amount of
water vapor. As particles traverse to peripheral area, water vapor
ratio decreases to a relative low level. Meanwhile, temperature and
pressure also drops as orange particles go outwards. As for blue
pathlines, since they come from outside of hurricane, they do not
carry much water vapor. However, the temperature rises as blue
particles come near the center.

The projection results with different distance metrics and param-
eters are shown in Figure 7. In Figure 7, we choose result (d)
as baseline. From the results, we can observe geometry metric
have totally different projection with others, since geometry met-
ric does not consider any information in attribute space. Between
Eulerian specification and Lagrangian specification, the main dif-
ference is their shape of clusters. For example, samples colored
blue are centralized in (b), and become more and more dispersed as
the timescope increasing in (c) and (d). These samples correspond
to the seeds from highest level of hurricane center. They are simi-
lar in attribute space when using Eulerian specification. However,
as we consider larger timescope, these pathlines traverse to regions
which are significantly different in attribute space. As a result, these
samples become more and more diverged in Lagrangian specifica-
tion. With careful observation, we can also discover lots of mixing
of samples with similar color in Eulerian specification. In LASP,
users can also adjust attribute weights to comprehend the roles of
individual attributes, as shown in Figure 7 (e)(f). The weights also
provide mechanisms to navigate sub-dimensional attribute spaces.

5.2 GEOS-5 Simulation

The Atmospheric General Circulation Model (AGCM) of Goddad
Earth Observation System, Version 5 (GEOS-5) from NASA God-
dard Space Flight Center is developed for meteorological research
and weather prediction [20]. The model is at a spatial resolution
of 1◦× 1.25◦ lat-lon grid with 72 vertical pressure layers. It com-
putes various attributes, including wind speed, humidity, tempera-
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Figure 8: The visualization of GEOS-5 simulation dataset with the proposed method. Two clusters are selected in the projection view, and the
corresponding pathlines are shown in the spatial views. Pathlines are also mapped in the attribute matrix to show the numerical distributions of
the selected features.

Run 0 Run 1

Figure 9: The LASP results and the spatial views for two runs from GEOS-5 ensembles at May 2000. Slight differences can be observed in
projection results. By selecting two regions in projection plot, corresponding pathlines are shown in spatial views. Significant divergence exists
in northern hemisphere for these two runs, while they are similar in southern part.

ture, atmospheric concentration of carbon dioxide, etc. Output of
the simulation is stored in hybrid-sigma pressure grid. An eight-
member ensemble simulation was performed previously. We use
the monthly average data from January 2000 to December 2001.
The data consists of 24 time steps with 35 variables in floating-
point precision.The overall data size is about 76GB.

In this case, in addition to the wind field, five scalar attributes are
considered, including wind speed magnitude (SPEED), mid-level
pressure (PL), specific humidity (Q), global carbon monoxide (CO),
and carbon dioxide fossil fuel (CO2FF). Two interesting regions
of samples are identified, which are highlighted in colored areas
(Figure 8). From the spatial rendering, pathlines in two clusters
are roughly separated by their spatial distribution. Pathlines with
orange color are near the equator, while blue ones are more closer
to polar region. By inspecting attribute space of the pathlines, we
found pathlines in orange cluster usually travel regions which have
much larger pressure, humidity, and concentration of CO, while
these attributes of blue pathlines are in a very narrow range.

In another case, we try to investigate the difference between en-
semble runs, which were conducted with slightly different initial
conditions. The visualization results are shown in Figure 9. In pro-
jection plot, these two ensemble runs show little differences. In
spatial views, we can observe that pathlines in these clusters have
significant divergence in northern hemisphere, while they are simi-
lar in southern part.

5.3 Discussion

The coupled multivariate analysis and flow advection with LASP
brings a novel perspective into unsteady flow datasets. Compared to

Eulerian-based methods, LASP is capable of showing more insight-
ful features in some applications. The Eulerian-based method is a
degradation of Lagrangian-based method in theory. In real appli-
cations, unsteady flow datasets often contain both vector and scalar
field data simultaneously, yet few existing methods are capable of
incorporating the analysis of the both data types effectively. We
have also received positive feedback on our visualization results
from scientists from climate research. Further quantitative user
study will be conducted to evaluate and improve our work.

There are a few limitations. First, the projection result can only
show the similarities between samples, instead of specific attribute
properties. Users need to identify the features by trial-and-error.
Second, the parameter reconfiguration requires the recomputation
of all pathlines. Due to the memory limit, all pathlines are dumped
immediately after the distances are computed.

6 CONCLUSIONS AND FUTURE WORK

In this work, we present a novel visualization method, which tightly
couples multivariate analysis and flow advection for unsteady flow
datasets with LASP. A scalable and parallel system, which com-
bines the MapReduce-like DStep framework and scalable Pivot
MDS, is designed for LASP to support large-scale analysis. In
the parallel system, massive pathlines are traced in DStep frame-
work with scalability, and the distances are computed before they
are projected in parallel. The results show that the selected features
in the projection show the groups of the pathlines in the attribute
space, which are further visualized in the spatial view.

In the future, we would like to extend our work in several ways.
Irregular and unstructured grids will be supported in the future for



more applications. Currently, we uniformly sample the spatial do-
main, which is not efficient enough on certain occasions. We would
also like to provide flexible mechanism for attribute selection and
sub-dimensional space exploration. Some derived attributes, e.g.
λ2, vorticity magnitudes, can be used to help on identifying more
interesting features. Dynamic strategies are going to be used to re-
duce the computational cost of LASP.
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